
27Apr10 Ken’s SQL Syntax Refresher 1

Select

SELECT [* | ALL | DISTINCT column1, column2]
FROM table1 [, table2];

SELECT [* | ALL | DISTINCT column1, column2]
FROM table1 [, table2]
WHERE [condition1 | expression1] [AND condition2 | expression2];

SELECT [* | ALL | DISTINCT column1, column2]
FROM table1 [, table2]
WHERE [condition1 | expression1] [AND condition2 | expression2]
ORDER BY column1| integer [ASC | DEC]

SELECT * FROM aTable;

SELECT DISTINCT * FROM aTable ORDER BY id ASC;

SELECT col1,col2 FROM aTable WHERE dateCol > (now() – 1 day);

SELECT DISTINCT COUNT(product_id) FROM productsTable;

SELECT city, AGV(salary) FROM employeeTbl
WHERE city <> ‘Greenwood’
GROUP BY city
HAVING AGV(salary) > 20000
ORDER BY 2

Where clause Conjunctive Operators

AND, OR

SELECT P.product_name, O.orderDate, O.quantity
FROM products P, orders O
WHERE P.serial_number = O.serial_number AND P.vendor_number = vendor_number;

SELECT emp_id, salary
FROM employeeTbl
WHERE salary IS NOT NULL OR
pay_rate IS NOT NULL

Ken’s SQL Syntax Refresher

27Apr10 Ken’s SQL Syntax Refresher 2

Compund Queries
UNION, UNION ALL, EXCEPT | MINUS, INTERSECT

The previous OR is the same as:

SELECT emp_id, salary
FROM employeeTbl
WHERE salary IS NOT NULL
UNION Union is Distinct = no duplicated rows (vs Union All)
SELECT emp_id, salary
FROM employeeTbl
WHERE pay_rate IS NOT NULL

SELECT * FROM Orders
WHERE Quantity BETWEEN 1 AND 100 EXCEPT <= Oracle uses MINUS
SELECT * FROM Orders WHERE Quantity BETWEEN 50 AND 75;

Where clause operators
=, <>, >, <, >=, <=, BETWEEN, LIKE, NOT LIKE, IN, NOT IN, IS NULL, IS NOT
NULL, EXISTS, NOT EXISTS

WHERE salary LIKE ‘200%’ means match on wildcard 200*
WHERE salary LIKE ‘_00’ means match on wildcard ?00

SELECT a.FirstName, a.LastName FROM Person.Contact AS a
WHERE EXISTS (
 SELECT * FROM HumanResources.Employee AS b
 WHERE a.ContactId = b.ContactID AND a.LastName = 'Johnson');
- is the same as -
SELECT a.FirstName, a.LastName FROM Person.Contact AS a
WHERE a.LastName IN (
SELECT a.LastName FROM HumanResources.Employee AS b
WHERE a.ContactId = b.ContactID AND a.LastName = 'Johnson');

Summary operators
COUNT, SUM, AVG, MAX, MIN

SELECT SUM(salary) as sum_salary FROM employeeTbl
SELECT COUNT(employeeId) as emp_count FROM employeeTbl
SELECT MAX(job_number) as max_job FROM aTable
SELECT MAX(job_number) as max_job, MIN(job_number) as min_job FROM aTable

Subquery with SELECT
SELECT E.emp_id, EP.pay_rate
FROM employee_tbl E, employee_pay_tbl EP

27Apr10 Ken’s SQL Syntax Refresher 3

WHERE E.emp_id = EP.emp_id
AND EP.pay_rate > (SELECT pay_rate FROM employee_tbl WHERE emp_id =
‘12345’)

Efficent Queries
1. Query the smallest table first
2. Use the most restrictive query first
3. Use IN rather than OR

 Use this one:
SELECT emp_id, last_name, first_name

FROM employee_tbl
WHERE city = ‘Indianapolis’
OR city = ‘Brownsburg’
OR city = ‘Greenfield’

SELECT emp_id, last_name, first_name
FROM employee_tbl
WHERE city IN (‘Indianapolis’,
‘Brownsburg’, ‘Greenfield’)

Join

SELECT field-list
FROM table-1

{ INNER | LEFT OUTER | RIGHT OUTER } JOIN table-2
ON table-1.field-1 { = | < | > | <= | >= |<> } table-2.field.2
[WHERE selection-criteria]
[ORDER BY field-list]

SELECT * FROM employee, department
WHERE employee.deptId = department.deptId

- is equivalent to –

SELECT * FROM employee
INNER JOIN department ON employee.deptId = department.deptId

- is equivalent to (equi join) -

SELECT * FROM employee
INNER JOIN department USING (deptId)

 Natural Join: only has one column with the matches from both tables:

SELECT * FROM employee NATURAL JOIN department

Join on more than two tables

SELECT Vendors

INNER JOIN Invoices
ON Vendors.VendorID = Invoices.VendorID

INNER JOIN InvoiceLineItems

employee

deptId

department

deptId

27Apr10 Ken’s SQL Syntax Refresher 4

ON Invoices.InvoiceID = InvoiceLineItems.InvoiceID

There no SELECT DISTINCT on Joins, use a “Nautral Join” A Natural Join is a special
equi(equals)-join returns the columns and rows in common between multiple tables

SELECT * FROM employee NATURAL JOIN department

SQL Server supports additional cross joins and full outer joins

SELECT * FROM employee CROSS JOIN department
same as:
SELECT * FROM employee, department;

Outer Joins

returns blank (or non existant) rows in the other table

SELECT E.id P.id FROM employeeTable E, employeePay P, WHERE E.id = P.id(+);

SELECT * FROM employee
LEFT OUTER JOIN department
ON employee.DepartmentID = department.DepartmentID

Insert
INSERT INTO table-name [(field-list)]
VALUES (value-list)

INSERT INTO aTable (col1, col2, col2) VALUES (‘value1’, ‘value2’, NULL);

Subquery with Insert

INSERT INTO table-name (field-columns)
SELECT-statement <= for the values to put into the field-columns

INSERT INTO aTable (col1, col2, col3)
 SELECT FROM anotherTable col1,col2,col3 WHERE dateCol > (now() – 1 day);

INSERT INTO InvoiceArchive

SELECT * FROM Invoices
WHERE InvoiceTotal – PaymentTotal – CreditTotal = 0

27Apr10 Ken’s SQL Syntax Refresher 5

Update
UPDATE table-name
SET expression-1 [,expression-2] …
WHERE selection-criteria

UPDATE ordersTable
SET quantity = 5
WHERE order_no = ‘12345’;

Subquery with Update
UPDATE employee_pay_tbl
SET pay_rate = pay_rate * 1.1
WHERE emp_id IN
 (SELECT emp_id FROM employee_tbl WHERE city = ‘Indianapolis’)

Delete
DELETE FROM table-name
WHERE selection-criteria

DELETE FROM orders_table
WHERE order_no = ‘12345’ AND date < (now() – 30 days);

Subquery with Delete

DELETE FROM employee_pay_tbl
WHERE emp_id = (SELECT emp_id FROM employee_tbl WHERE last_name =
‘Freed’ AND first_name = ‘Ken’)

Views
A View is a predefined query that’s stored in a database

CREATE VIEW VendorsMin AS

SELECT VendorName, VandorStatus
FROM Vendors

Use the above view just like it was a table:

SELECT * FROM VendorsMin …

27Apr10 Ken’s SQL Syntax Refresher 6

Stored Procedures
A Stored Procedure is one or more SQL statements that

- can accept input parameters and

- that have been compiled and stored within the database.

Stored Procedures can improve db performance since they’re compiled and optimized the
first time they’re executed

Their alternative is to execute Transact-SQL programs stored locally on client computers

Lots of places that use SQL Server use stored procs for database I/O. While it gets better
performance & security, it can be a real pain to figure out what is going on if there is data
issue. The SQL server profiler can be a useful utility for troubleshooting though.

- The biggest complaint with Stored Procedures is when there is a series of transactions
that were fired off as a bunch of stored procedures, it can be difficult and time
consuming to replicate the events that led up to where the problem is occurring,
depending on how many stored procs are called.

A Trigger is a special type of stored procedure that’s fired when record are inserted,
updated or deleted from a table.

- Triggers can be used to enforce Referential Integrity.

- Triggers can be used to check the validity of data updated or inserted into a table

CREATE PROCEDURE VendorByState @State Char As

SELECT VendorName, VendorState, VendorPhone
FROM Vendors
WHERE VendorState = @State
ORDER BY VendorName

Using the above stored procedure:

Execute VendorsByState for State = “CA”

27Apr10 Ken’s SQL Syntax Refresher 7

Some Common Queries

CREATE DATABASE aDataBase;

CREATE TABLE testTable (id INT NOT NULL AUTO_INCRMENT,
PRIMARY_KEY(id), testField VARCHAR(50);
GRANT insert,update,select on *.* to aTable@localhost
identified by ‘aPassWord’;

INSERT INTO testTable (testField) VALUES (‘first message’);

DELETE FROM testTable WHERE id=2;

UPDATE members set expire_ts=’2009-09-09 12:00:00’ where id=26;

ALTER TABLE some_table ADD expired TYPE boolean; // add a column

ALTER TABLE (aTableName) ADD <colname> <coltype>;

show tables;
show tables like 'journal%'
describe service_attr;

27Apr10 Ken’s SQL Syntax Refresher 8

MISC
Database Normalization

1st normal form:
No repeated data. Create separate tables

2nd normal form:
Data depends on the WHOLE key (e.g., in case you concatenate two attributes
together to make a unique key
 e.g.: person,skill <= address violates since address has nothing to do with skill

3rd normal form:
Attributes don’t depend on an attribute which depends on the whole key,

e.g.: tournament,year <= winner <= winner’s birthday

Referential Integrity:

Means that the records with foreign keys always have records with a matching
primary key in another table.

- This means that you can’t add a record with a foreign key value if the primary
key record doesn’t already exist (in another table).

- It also means that you can’t delete a primary key record without deleting
related foreign key records.

One way to enforce Referential Integrity is to define the primary and foreign key
relationship within the database.

- SQL Server calls this Foreign Key Constraints.
- When you do this, you’re using what SQL Server calls Declarative

Referential Integrity (DRI) = Referential Integrity is enforce
automatically by the DBMS

- SQl Server doesn’t provide for cascading changes and deletes to related
tables.

- If you want to be able to cascade changes and deletes with SQL
Server, you can use Triggers to enforce referential integrity instead of
Foreign Key Constraints,

i.e. Triggers let you cascade changes from the Primary Keys in one
table to the Foreign Keys in a related table.

A 1-1 table relationship means you can just put it all in one table.
- Sometimes you’d do this for secure columns, or too many columns

27Apr10 Ken’s SQL Syntax Refresher 9

Handling Lists of Things in Tables

Wrong way to design:

firstName lastName Instrument1 Instrument2 Instrument3

Angie Beltran Guitar Sax
Laura Chow Sax Clarinet Piano
Debbie Moss Drums Guitar
Raul Garcia Guitar Piano Drums

Right way to design (repeat some info in the rows), which is a one-to-many relationship:

firstName lastName Instrument

Angie Beltran Guitar
Angie Beltran Sax
Debbie Moss Drums
Debbie Moss Guitar
Raul Garcia Guitar
Raul Garcia Piano
Raul Garcia Drums

	Select
	Where clause Conjunctive Operators
	Compund Queries

	UNION Union is Distinct = no duplicated rows (vs Union All)
	Where clause operators
	Summary operators
	Subquery with SELECT

	Efficent Queries
	Join
	Join on more than two tables
	Outer Joins

	Insert
	Subquery with Insert

	Update
	Subquery with Update

	Delete
	Subquery with Delete

	Views
	Stored Procedures
	Some Common Queries
	MISC
	Database Normalization
	1st normal form:
	2nd normal form:
	3rd normal form:

	Referential Integrity:
	A 1-1 table relationship means you can just put it all in one table.
	Handling Lists of Things in Tables

